Resources

Our mission is to make AI trustworthy for all enterprises. Explore our ML and AI resources below.

Explainable AI Summit 2020

Fiddler’s 3rd Annual Explainable AI Summit brought together industry leaders, researchers, and Responsible AI experts to discuss the future of Explainable AI. Attendees learned about the top-of-mind issues that leaders face when implementing AI, and heard from those shaping the field on where things are headed.

AI Explainability and Monitoring Survey 2020

We conducted a survey of Data Science leaders to gain a better understanding of the state of AI across industries and stakeholders. In this report, we present the results of our survey and share our take on implications for the future of AI adoption within organizations.

Download

Survey

The Rise of MLOps Monitoring

ML is not the easiest technology to deploy. This results in a majority of ML models never making it to production. This paper focuses on the final hurdle to successful AI deployment and the last mile of MLOps - ML monitoring - and reviews key considerations and current approaches.


Download

Whitepaper

AI Observability with Explainability

While monitoring by itself provides real-time issue visibility, it is often insufficient to identify the root cause of issues given the AI system’s complexity. Observability, a means to deduce internal state from its external outputs, is therefore critical to know the ‘why’ for a quick resolution. Explainable AI enables the deployment of high-risk AI solutions while AI Observability increases the success of these AI deployments.

Download

Whitepaper

Where is AI headed in 2020?

An infographic of our top AI predictions for 2020. It’s exciting to see where AI, and especially the sub-category of Explainable AI, is headed in 2020. Aspects like AI Governance, AI regulation, and Ethical AI will stay top of mind, and explainable AI is one of the best ways to ensure governance over AI, compliance with regulations, and the creation of fair and ethical AI.

Download

Infographic

Build Ethical AI using Explainable AI

Explainable AI is the most effective way to ensure artificial intelligence (AI) solutions are transparent, accountable, responsible, fair, and ethical. Explainability enables companies to address regulatory requirements on algorithmic transparency, oversight, and disclosure, and build responsible AI systems.

Download

Whitepaper