4
Min Read
Unlike most things related to model monitoring, the difference between DevOps and MLOps is relatively simple. Development and operations (DevOps) combines two critical disciplines: software development and IT management. Ideally, the DevOps framework expedites the development of new products or projects and simplifies the maintenance process for existing deployments. Although DevOps is fairly new, it has already brought immense value and has become widely accepted. Some benefits of DevOps include:
MLOps, or machine learning (ML) operations, dictates ML-specific best practices for developing ML models, monitoring their progress, and retraining them for optimization. In the past, there was a concerning lack of structure for the ML lifecycle which forced ML teams to solely rely on DevOps principles for direction. MLOps was created to solve this issue and provide concrete processes as part of a model monitoring framework.
So, how are MLOps and DevOps related? Will one replace the other? Will DevOps disappear? We will explore answers to these questions and more in the next few sections.
No, MLOps is not intended to replace DevOps. MLOps applies DevOps principles and practices to machine learning requirements and training ML algorithms. Because machine learning is so different from software, both need their own lifecycles. In short, bugs in ML models can’t be fixed the same way developers fix code.
The complexities involved with machine learning require ML teams to continually monitor all aspects of the ML lifecycle. This is especially important because the quality of ML model predictions tend to degrade overtime. Once model drift or degradation is detected, ML teams follow MLOps practices to perform root cause analysis and gain insight into the model’s behavior.
Various benefits can be gleaned from MLOps, including:
In the end, MLOps enables teams to develop and deploy more reliable models and helps AI reach its full potential.
Yes, MLOps is an additional phase of the DevOps lifecycle that was developed to create a standardized methodology and lifecycle for machine learning processes. Because of their similarities, ML and DevOps are closely related in many ways. In fact, many MLOps processes are informed by DevOps. The overarching goals of DevOps and MLOps are rather similar:
Ultimately, machine learning and DevOps approaches happily coexist.
Because it is such a new concept, MLOps is not completely standardized yet. This means many organizations attempt to create their own processes for the MLOps lifecycle and base them on DevOps procedures. However, cobbling MLOps framework from scratch is not the most efficient approach.
Utilizing a model performance management (MPM) platform eliminates the guesswork and helps organizations solve various ML operational challenges. But what exactly is model performance management? In simple terms, MPM is an essential tool that empowers MLOps practices by monitoring and explaining model performance at every stage of the ML lifecycle.
An MPM platform is one of the most critical MLOps tools because it:
Request a demo today to improve your MLOps practices with an MPM platform.